Sains Malaysiana 54(12)(2025): 2859-2872
http://doi.org/10.17576/jsm-2025-5412-05
Integrated
Investigation on the Synthesis, Computational Analysis, Thermal Stability, and
Performance of Eco-Friendly Chelating Agents for Calcium Ions
(Penyelidikan Bersepadu tentang Sintesis, Analisis Pengkomputeran, Kestabilan Terma dan Prestasi Agen Pengkelat Mesra Alam untuk Ion Kalsium)
EMILY S MAJANUN3,5,
FATIN NUR AIN ABDUL RASHID1, MUHAMAD KAMIL YAAKOB2,4,
AHMAD SAZALI HAMZAH1, ZURINA SHAAMERI1, KARIMAH KASSIM1,3,
NOOR HIDAYAH PUNGOT1,3, MUHAMAD AZWAN HAMALI3, AHMAD SHALABI MD SAURI5,
FARHANA JAAFAR AZUDDIN5, YON AZWA SAZALI5, M ZUHAILI
KASHIM5 & MOHD FAZLI MOHAMMAT1,3
1Centre of Chemical Synthesis & Polymer Technology, Institute of
Science, Universiti Teknologi MARA Puncak Alam, 42300 Puncak Alam, Selangor, Malaysia
2Centre of Functional Materials
& Nanotechnology, Institute of Science, Universiti Teknologi MARA Shah Alam,
40450 Shah Alam, Selangor, Malaysia
3School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, 40450 Shah Alam, Selangor,
Malaysia
4School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, 40450 Shah Alam, Selangor,
Malaysia
5PETRONAS Research Sdn Bhd,
Lot 3288 & 3289, Off Jln Ayer Itam,
Kawasan Institusi Bangi,
43000 Kajang, Selangor, Malaysia
Received: 31 May 2025/Accepted:
18 November 2025
Abstract
Several chelating agents, including amine diacetic acid and amino acid diacetic acid, have been synthesized for the purpose of treating and controlling
unwanted metal cations applications, specifically targeting divalent ions such
as calcium (Ca2+) that contribute to scale formation in high temperature
carbonate environments. To evaluate their effectiveness, Density Functional Theory
(DFT) calculation was performed to assess electronic reactivity through quantum
descriptors including EHOMO, ELUMO, energy gap (ΔE), electron affinity
(A), ionization potential (I), electronegativity (χ), global hardness
(η), and global softness (σ). A diacetic acid (ADA) exhibited the lowest HOMO-LUMO energy gap, indicating high molecular
reactivity toward metal surfaces. Monte Carlo simulations were conducted to
determine the most stable adsorption configurations and quantify the adsorption
energies of each chelating agent with Ca2+ ions. The ranking of
adsorption affinity was found to be: GlnDA > ADA
> PDA > BnDA > EDA > BDA, with GlnDA exhibited the highest adsorption energy, suggesting
strong adsorption towards Ca ions. In reality, performance study conducted
demonstrates that GlnDA exhibits a notable ability to
dissolve Ca from carbonate rock under acidic conditions.
Keywords: Adsorption energy; calcite dissolution; calcium
ions; chelating agent; density functional theory (DFT); Monte
Carlo simulation
Abstrak
Beberapa agen pengkelat, termasuk asid diasetik amina dan asid diasetik berasaskan asid amino, telah disintesis bagi tujuan merawat dan mengawal aplikasi kation logam yang tidak diingini, khususnya mensasarkan ion dwivalen seperti kalsium (Ca2+) yang menyumbang kepada pembentukan kerak dalam persekitaran karbonat bersuhu tinggi. Bagi menilai keberkesanan agen ini, pengiraan Teori Fungsi Ketumpatan (DFT) telah dijalankan untuk menilai kereaktifan elektronik melalui parameter global kuantum seperti EHOMO, ELUMO, jurang tenaga (ΔE), pertalian elektron (A), potensi ionisasi (I), elektronegatif (χ), kekerasan global (η) dan kelembutan global (σ). Simulasi Monte Carlo dilakukan bagi mengenal pasti konfigurasi dan penjerapan tenaga yang paling stabil untuk mengkelat ion kalsium (Ca2+), kedudukan penjerapan tenaga adalah seperti berikut: GlnDA > ADA > PDA
> BnDA > EDA > BDA. GlnDA menunjukkan penjerapan tenaga tertinggi, menandakan tahap penjeratan yang kuat terhadap ion kalsium. Secara realiti, kajian prestasi menunjukkan bahawa GlnDA berkebolehan untuk melarutkan kalsium daripada batuan karbonat dalam keadaan berasid.
Kata kunci: Agen pengkelat; ion kalsium; pelarutan kalsit; simulasi Monte Carlo; tenaga penjerapan; teori fungsi ketumpatan
REFERENCES
Al Hamad, M., Al-Sobhi, S.A., Onawole,
A.T., Hussein, I.A. & Khraisheh, M. 2020. Density-functional theory
investigation of barite scale inhibition using phosphonate and carboxyl-based
inhibitors. ACS Omega 5: 33323-3328. https://doi.org/10.1021/acsomega.0c05125
Attia, S.K., Elgendy, A.T. & Rizk, S.A. 2019.
Efficient green synthesis of antioxidant Azacoumarin dye bearing
spiro-pyrrolidine for enhancing electro-optical properties of Perovskite solar
cells. Journal of Molecular Structure 1184: 583-592.
https://doi.org/10.1016/j.molstruc.2019.02.042
Becke, A.D. 1993.
Density‐functional thermochemistry. III. The role of exact exchange. The
Journal of Chemical Physics 98(7): 5648-5652.
https://doi.org/10.1063/1.464913
Benedek, N.A., Snook, I.K., Latham, K.
& Yarovsky, I. 2005. Application of numerical basis sets to hydrogen bonded
systems: A density functional theory study. The Journal of Chemical Physics 122(14): 144102. https://doi.org/10.1063/1.1876152
Bucheli-Witschel,
M. & Egli, T. 2001. Environmental fate and microbial degradation of
aminopolycarboxylic acids. FEMS Microbiology Reviews 25(1): 69-106.
https://doi.org/10.1016/s0168-6445(00)00055-3
Casewit, C.J., Colwell, K.S. & Rappe,
A.K. 1992a. Application of a universal force field to main group compounds. Journal
of the American Chemical Society 114(25): 10046-10053.
https://doi.org/10.1021/ja00051a042
Casewit, C.J., Colwell, K.S. & Rappe,
A.K. 1992b. Application of a universal force field to organic molecules. Journal
of the American Chemical Society 114(25): 10035-10046.
https://doi.org/10.1021/ja00051a041
Delley, B. 2000. From molecules to solids
with the DMol3 approach. The Journal of Chemical Physics 113(18): 7756-7764. https://doi.org/10.1063/1.1316015
Delley, B. 1990. An all-electron
numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics 92(1): 508-517.
https://doi.org/10.1063/1.458452
Ding, X., Li, M., Yang, W., Zhang, K., Zuo,
Z., Chen, Y., Yin, X. & Liu, Y. 2020. Experimental and theoretical studies
of sodium acetyldithiocarbamate for the removal of Cu2+ and Ni2+ from aqueous solution. Journal of Colloid and Interface Science 579: 330-339.
https://doi.org/10.1016/j.jcis.2020.06.074
Dong, W., Wang,
R., Li, H., Yang, X., Li, J., Wang, H., Jiang, C. & Wang, Z. 2023. Effects
of chelating agents addition on ryegrass extraction of cadmium and lead in
artificially contaminated soil. Water 15(10): 1929.
https://doi.org/10.3390/w15101929
Fredd, C.N. & Fogler, H.S. 1998. The
influence of chelating agents on the kinetics of calcite dissolution. Journal
of Colloid and Interface Science 197(204): 187-197.
Frenier, W.W. 2001. Novel scale removers
are developed for dissolving alkaline earth deposits. Proceedings - SPE
International Symposium on Oilfield Chemistry. pp. 411-423.
https://doi.org/10.2523/65027-ms
Frenier, W.W., Rainey, M., Wilson, D.,
Crump, D. & Jones, L. 2003. A biodegradable chelating agent is developed
for stimulation of oil and gas formations. SPE 80597.
https://doi.org/10.2118/80597-ms
Frenier, W.W., Wilson, D., Crump, D.
& Jones, L. 2000. Use of highly acid-soluble chelating agents in well
stimulation services. SPE Reservoir Engineering (Society of Petroleum
Engineers), No. A. pp. 799-810. https://doi.org/10.2118/63242-ms
Frenkel, D. & Smit, B. 1996. Understanding
Molecular Simulation: From Algorithms to Applications. Massachusetts: Academic
Press, Inc.
Fujieda, H., Maeda, K. & Kato, N. 2018.
Efficient and scalable synthesis of glucokinase activator with a chiral
thiophenyl-pyrrolidine scaffold. Organic Process Research & Development 23(1): 69-77. https://doi.org/10.1021/acs.oprd.8b00354
Guo, L., Ren, X., Zhou, Y., Xu, S., Gong,
Y. & Zhang, S. 2017. Theoretical evaluation of the corrosion inhibition
performance of 1,3-thiazole and its amino derivatives. Arabian Journal of
Chemistry 10(1): 121-130. https://doi.org/10.1016/j.arabjc.2015.01.005
Hassan, A.,
Mahmoud, M. & Patil, S. 2021. Impact of chelating agent salt type on the
enhanced oil recovery from carbonate and sandstone reservoirs. Applied
Sciences 11(15): 7109. https://doi.org/10.3390/app11157109
Hassan, A., Mahmoud, M., Bageri, B.S., Aljawad,
M.S., Kamal, M.S., Barri, A.A. & Hussein, I.A. 2020. Applications of chelating
agents in the upstream oil and gas industry: A review. Energy & Fuels 34(12): 15593-15613. https://doi.org/10.1021/acs.energyfuels.0c03279
Hijazi, M., Krumm, C., Cinar, S., Arns, L.,
Alachraf, W., Hiller, W., Schrader, W., Winter, R. & Tiller, J.C. 2018.
Entropically driven polymeric enzyme inhibitors by end-group directed conjugation. Chemistry - A European Journal 24(18): 4523-4527.
https://doi.org/https://doi.org/10.1002/chem.201800168
Knepper, T.P. 2003. Synthetic chelating
agents and compounds exhibiting complexing properties in the aquatic environment. Trends in Analytical Chemistry 22(10): 708-724.
https://doi.org/10.1016/S0165-9936(03)01008-2
LePage, J.N., De Wolf, C.A., Bemelaar, J.H.
& Nasr-El-Din, H.A. 2011. An environmentally friendly stimulation fluid for
high-temperature applications. SPE Journal 16(1): 104-110.
https://doi.org/10.2118/121709-PA
Mahmoud, M. 2018. Reaction of chelating
agents and catalyst with sandstone minerals during matrix acid treatment. Arabian
Journal for Science and Engineering 43(11): 5745-5756.
https://doi.org/10.1007/s13369-017-2962-8
Mahmoud, M.A. & Nasr-El-Din, H.A.
2014. Modeling flow of chelating agents during stimulation of carbonate
reservoirs. Arabian Journal for Science and Engineering 39(12):
9239-9248. https://doi.org/10.1007/s13369-014-1437-4
Mahmoud, M.,
Abdelgawad, K., Elkatatny, S., Akram, A. & Stanitzek, T. 2016. Stimulation
of seawater injectors by GLDA (Glutamic-Di Acetic Acid). SPE Drilling &
Completion 31(03): 178-187. https://doi.org/10.2118/172572-pa
Mahmoud, M.A., Nasr-El-Din, H.A., De
Wolf, C.A., LePage, J.N. & Bemelaar, J.H. 2011. Evaluation of a new
environmentally friendly chelating agent for high-temperature applications. SPE
Journal 16(3): 559-574. https://doi.org/10.2118/127923-PA
Mandava, S., Ganganna, B., Hwang, J., Jang,
Y., Hwang, J., Samala, M., Kim, K-B., Park, H., Lee, J.H., Baek, S.Y. &
Lee, J. 2017. Synthesis and structure revision of dimeric tadalafil analogue
adulterants in dietary supplements. Chemical and Pharmaceutical Bulletin 65(5): 498-503. https://doi.org/10.1248/cpb.c17-00034
Metropolis, N., Rosenbluth, A.W., Rosenbluth,
M.N., Teller, A.H. & Teller, E. 1953. Equation of state calculations by
fast computing machines. The Journal of Chemical Physics 21(6): 1087-1092.
https://doi.org/10.1063/1.1699114
Miar, M., Shiroudi, A., Pourshamsian, K.,
Oliaey, A.R. & Hatamjafari, F. 2021. Theoretical investigations on the
HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital,
and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine
and its para-substituted derivatives: Solvent and subs. Journal of
Chemical Research 45(1-2): 147-158. https://doi.org/10.1177/1747519820932091
Muhammad Haziq Ridzwan, Muhammad Haziq,
Muhamad Kamil Yaakob, Zubainun Mohamed Zabidi, Ahmad Sazali Hamzah, Zurina
Shaameri, Fatin Nur Ain Abdul Rashid, Karimah Kassim, Mohd Fazli Mohammat, Noor
Hidayah Pungot, Muhamad Azwan Muhamad Hamali, Ahmad Shalabi Md Sauri, Farhana
Jaafar Azuddin, Emily S. Majanun, Yon Azwa Sazali & M. Zuhaili Kashim.
2022. Computational insight into the quantum chemistry, interaction and
adsorption energy of aminopolycarboxylic acid chelating agents towards metal
cations. Computational and Theoretical Chemistry 1208: 113579.
https://doi.org/10.1016/j.comptc.2021.113579
Noureddine, O., Issaoui, N., Gatfaoui, S.,
Al-dossary, O. & Marouani, H. 2021. Quantum chemical calculations,
spectroscopic properties and molecular docking studies of a novel piperazine
derivative. Journal of King Saud University - Science 33(2): 101283.
https://doi.org/10.1016/j.jksus.2020.101283
Obot, I.B., Kaya, S., Kaya, C. &
Tüzün, B. 2016. Density functional theory (DFT) modeling and Monte Carlo simulation
assessment of inhibition performance of some carbohydrazide Schiff bases for
steel corrosion. Physica E: Low-Dimensional Systems and Nanostructures 80: 82-90. https://doi.org/10.1016/j.physe.2016.01.024
Pilli, S.R., Banerjee, T. & Mohanty,
K. 2015. HOMO - LUMO energy interactions between endocrine disrupting chemicals
and ionic liquids using the density functional theory: Evaluation and comparison. Journal of Molecular Liquids 207: 112-124. https://doi.org/10.1016/j.molliq.2015.03.019
Rappe, A.K., Colwell, K.S. & Casewit,
C.J. 1993. Application of a universal force field to metal complexes. Inorganic
Chemistry 32(16): 3438-3450. https://doi.org/10.1021/ic00068a012
Rappe, A.K., Casewit, C.J., Colwell, K.S.,
Goddard III, W.A. & Skiff, W.M. 1992. UFF, a full periodic table force
field for molecular mechanics and molecular dynamics simulations. Journal of
the American Chemical Society 114(25): 10024-10035.
https://doi.org/10.1021/ja00051a040
Repo, E., Warchoł, J.K., Bhatnagar,
A., Mudhoo, A. & Sillanpää, M. 2013. Aminopolycarboxylic acid
functionalized adsorbents for heavy metals removal from water. Water
Research 47(14): 4812-4832. https://doi.org/10.1016/j.watres.2013.06.020
Singh, A., Ansari, K.R., Quraishi, M.A. &
Lin, Y. 2019. Investigation of corrosion inhibitors adsorption on metals using
density functional theory and molecular dynamics simulation. Corrosion
Inhibitors, edited by Singh, A. IntechOpen.
https://doi.org/10.5772/intechopen.84126
Stephens, P.J., Devlin, F.J., Chabalowski,
C.F. & Frisch, M.J. 1994. Ab initio calculation of vibrational
absorption and circular dichroism spectra using density functional force fields. The Journal of Physical Chemistry 98(45): 11623-11627. https://doi.org/10.1021/j100096a001
Tuerk, H., Weber, H., Kischkel, D. &
Franke, J. 2019. Formulations and Production and Use Thereof. Patent No.
US 10,844,326 B2.
Xu, Y., Zhang, S., Li, W., Guo, L., Xu, S.,
Feng, L. & Madkour, L.H. 2018. Experimental and theoretical investigations
of some pyrazolo-pyrimidine derivatives as corrosion inhibitors on copper in
sulfuric acid solution. Applied Surface Science 459: 612-620.
https://doi.org/10.1016/j.apsusc.2018.08.037
Yusuf, T.L., Oladipo, S.D., Zamisa, S., Kumalo,
H.M., Lawal, I.A., Lawal, M.M. & Mabuba, N. 2021. Design of new Schiff-base
copper(II) complexes: Synthesis, crystal structures, DFT study, and binding
potency toward cytochrome P450 3A4. ACS Omega 6(21): 13704-13718.
https://doi.org/10.1021/acsomega.1c00906
Ziemlak, L.W., Bullock, J.L., Bersworth,
F.C. & Martell, A.E. 1950. Carboxymethylation of amines. III. Preparation
of substituted glycines. The Journal of Organic Chemistry 15(2):
255-258. https://doi.org/10.1021/jo01148a007
*Corresponding author; email:
mohdfazli@uitm.edu.my