Sains Malaysiana 54(12)(2025): 2859-2872

http://doi.org/10.17576/jsm-2025-5412-05

 

Integrated Investigation on the Synthesis, Computational Analysis, Thermal Stability, and Performance of Eco-Friendly Chelating Agents for Calcium Ions

(Penyelidikan Bersepadu tentang Sintesis, Analisis Pengkomputeran, Kestabilan Terma dan Prestasi Agen Pengkelat Mesra Alam untuk Ion Kalsium)

 

EMILY S MAJANUN3,5, FATIN NUR AIN ABDUL RASHID1, MUHAMAD KAMIL YAAKOB2,4, AHMAD SAZALI HAMZAH1, ZURINA SHAAMERI1, KARIMAH KASSIM1,3, NOOR HIDAYAH PUNGOT1,3, MUHAMAD AZWAN HAMALI3, AHMAD SHALABI MD SAURI5, FARHANA JAAFAR AZUDDIN5, YON AZWA SAZALI5, M ZUHAILI KASHIM5 & MOHD FAZLI MOHAMMAT1,3

 

1Centre of Chemical Synthesis & Polymer Technology, Institute of Science, Universiti Teknologi MARA Puncak Alam, 42300 Puncak Alam, Selangor, Malaysia

2Centre of Functional Materials & Nanotechnology, Institute of Science, Universiti Teknologi MARA Shah Alam, 40450 Shah Alam, Selangor, Malaysia

3School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, 40450 Shah Alam, Selangor, Malaysia

4School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, 40450 Shah Alam, Selangor, Malaysia
5PETRONAS Research Sdn Bhd, Lot 3288 & 3289, Off Jln Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia

 

Received: 31 May 2025/Accepted: 18 November 2025

 

Abstract

Several chelating agents, including amine diacetic acid and amino acid diacetic acid, have been synthesized for the purpose of treating and controlling unwanted metal cations applications, specifically targeting divalent ions such as calcium (Ca2+) that contribute to scale formation in high temperature carbonate environments. To evaluate their effectiveness, Density Functional Theory (DFT) calculation was performed to assess electronic reactivity through quantum descriptors including EHOMO, ELUMO, energy gap (ΔE), electron affinity (A), ionization potential (I), electronegativity (χ), global hardness (η), and global softness (σ). A diacetic acid (ADA) exhibited the lowest HOMO-LUMO energy gap, indicating high molecular reactivity toward metal surfaces. Monte Carlo simulations were conducted to determine the most stable adsorption configurations and quantify the adsorption energies of each chelating agent with Ca2+ ions. The ranking of adsorption affinity was found to be: GlnDA > ADA > PDA > BnDA > EDA > BDA, with GlnDA exhibited the highest adsorption energy, suggesting strong adsorption towards Ca ions. In reality, performance study conducted demonstrates that GlnDA exhibits a notable ability to dissolve Ca from carbonate rock under acidic conditions.

Keywords: Adsorption energy; calcite dissolution; calcium ions; chelating agent; density functional theory (DFT); Monte Carlo simulation

 

Abstrak

Beberapa agen pengkelat, termasuk asid diasetik amina dan asid diasetik berasaskan asid amino, telah disintesis bagi tujuan merawat dan mengawal aplikasi kation logam yang tidak diingini, khususnya mensasarkan ion dwivalen seperti kalsium (Ca2+) yang menyumbang kepada pembentukan kerak dalam persekitaran karbonat bersuhu tinggi. Bagi menilai keberkesanan agen ini, pengiraan Teori Fungsi Ketumpatan (DFT) telah dijalankan untuk menilai kereaktifan elektronik melalui parameter global kuantum seperti EHOMO, ELUMO, jurang tenaga (ΔE), pertalian elektron (A), potensi ionisasi (I), elektronegatif (χ), kekerasan global (η) dan kelembutan global (σ). Simulasi Monte Carlo dilakukan bagi mengenal pasti konfigurasi dan penjerapan tenaga yang paling stabil untuk mengkelat ion kalsium (Ca2+), kedudukan penjerapan tenaga adalah seperti berikut: GlnDA > ADA > PDA > BnDA > EDA > BDA. GlnDA menunjukkan penjerapan tenaga tertinggi, menandakan tahap penjeratan yang kuat terhadap ion kalsium. Secara realiti, kajian prestasi menunjukkan bahawa GlnDA berkebolehan untuk melarutkan kalsium daripada batuan karbonat dalam keadaan berasid.

Kata kunci: Agen pengkelat; ion kalsium; pelarutan kalsit; simulasi Monte Carlo; tenaga penjerapan; teori fungsi ketumpatan

 

REFERENCES

Al Hamad, M., Al-Sobhi, S.A., Onawole, A.T., Hussein, I.A. & Khraisheh, M. 2020. Density-functional theory investigation of barite scale inhibition using phosphonate and carboxyl-based inhibitors. ACS Omega 5: 33323-3328. https://doi.org/10.1021/acsomega.0c05125

Attia, S.K., Elgendy, A.T. & Rizk, S.A. 2019. Efficient green synthesis of antioxidant Azacoumarin dye bearing spiro-pyrrolidine for enhancing electro-optical properties of Perovskite solar cells. Journal of Molecular Structure 1184: 583-592. https://doi.org/10.1016/j.molstruc.2019.02.042

Becke, A.D. 1993. Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 98(7): 5648-5652. https://doi.org/10.1063/1.464913

Benedek, N.A., Snook, I.K., Latham, K. & Yarovsky, I. 2005. Application of numerical basis sets to hydrogen bonded systems: A density functional theory study. The Journal of Chemical Physics 122(14): 144102. https://doi.org/10.1063/1.1876152

Bucheli-Witschel, M. & Egli, T. 2001. Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiology Reviews 25(1): 69-106. https://doi.org/10.1016/s0168-6445(00)00055-3

Casewit, C.J., Colwell, K.S. & Rappe, A.K. 1992a. Application of a universal force field to main group compounds. Journal of the American Chemical Society 114(25): 10046-10053. https://doi.org/10.1021/ja00051a042

Casewit, C.J., Colwell, K.S. & Rappe, A.K. 1992b. Application of a universal force field to organic molecules. Journal of the American Chemical Society 114(25): 10035-10046. https://doi.org/10.1021/ja00051a041

Delley, B. 2000. From molecules to solids with the DMol3 approach. The Journal of Chemical Physics 113(18): 7756-7764. https://doi.org/10.1063/1.1316015

Delley, B. 1990. An all-electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics 92(1): 508-517. https://doi.org/10.1063/1.458452

Ding, X., Li, M., Yang, W., Zhang, K., Zuo, Z., Chen, Y., Yin, X. & Liu, Y. 2020. Experimental and theoretical studies of sodium acetyldithiocarbamate for the removal of Cu2+ and Ni2+ from aqueous solution. Journal of Colloid and Interface Science 579: 330-339. https://doi.org/10.1016/j.jcis.2020.06.074

Dong, W., Wang, R., Li, H., Yang, X., Li, J., Wang, H., Jiang, C. & Wang, Z. 2023. Effects of chelating agents addition on ryegrass extraction of cadmium and lead in artificially contaminated soil. Water 15(10): 1929. https://doi.org/10.3390/w15101929

Fredd, C.N. & Fogler, H.S. 1998. The influence of chelating agents on the kinetics of calcite dissolution. Journal of Colloid and Interface Science 197(204): 187-197.

Frenier, W.W. 2001. Novel scale removers are developed for dissolving alkaline earth deposits. Proceedings - SPE International Symposium on Oilfield Chemistry. pp. 411-423. https://doi.org/10.2523/65027-ms

Frenier, W.W., Rainey, M., Wilson, D., Crump, D. & Jones, L. 2003. A biodegradable chelating agent is developed for stimulation of oil and gas formations. SPE 80597. https://doi.org/10.2118/80597-ms

Frenier, W.W., Wilson, D., Crump, D. & Jones, L. 2000. Use of highly acid-soluble chelating agents in well stimulation services. SPE Reservoir Engineering (Society of Petroleum Engineers), No. A. pp. 799-810. https://doi.org/10.2118/63242-ms

Frenkel, D. & Smit, B. 1996. Understanding Molecular Simulation: From Algorithms to Applications. Massachusetts: Academic Press, Inc.

Fujieda, H., Maeda, K. & Kato, N. 2018. Efficient and scalable synthesis of glucokinase activator with a chiral thiophenyl-pyrrolidine scaffold. Organic Process Research & Development 23(1): 69-77. https://doi.org/10.1021/acs.oprd.8b00354

Guo, L., Ren, X., Zhou, Y., Xu, S., Gong, Y. & Zhang, S. 2017. Theoretical evaluation of the corrosion inhibition performance of 1,3-thiazole and its amino derivatives. Arabian Journal of Chemistry 10(1): 121-130. https://doi.org/10.1016/j.arabjc.2015.01.005

Hassan, A., Mahmoud, M. & Patil, S. 2021. Impact of chelating agent salt type on the enhanced oil recovery from carbonate and sandstone reservoirs. Applied Sciences 11(15): 7109. https://doi.org/10.3390/app11157109

Hassan, A., Mahmoud, M., Bageri, B.S., Aljawad, M.S., Kamal, M.S., Barri, A.A. & Hussein, I.A. 2020. Applications of chelating agents in the upstream oil and gas industry: A review. Energy & Fuels 34(12): 15593-15613. https://doi.org/10.1021/acs.energyfuels.0c03279

Hijazi, M., Krumm, C., Cinar, S., Arns, L., Alachraf, W., Hiller, W., Schrader, W., Winter, R. & Tiller, J.C. 2018. Entropically driven polymeric enzyme inhibitors by end-group directed conjugation. Chemistry - A European Journal 24(18): 4523-4527. https://doi.org/https://doi.org/10.1002/chem.201800168

Knepper, T.P. 2003. Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment. Trends in Analytical Chemistry 22(10): 708-724. https://doi.org/10.1016/S0165-9936(03)01008-2

LePage, J.N., De Wolf, C.A., Bemelaar, J.H. & Nasr-El-Din, H.A. 2011. An environmentally friendly stimulation fluid for high-temperature applications. SPE Journal 16(1): 104-110. https://doi.org/10.2118/121709-PA

Mahmoud, M. 2018. Reaction of chelating agents and catalyst with sandstone minerals during matrix acid treatment. Arabian Journal for Science and Engineering 43(11): 5745-5756. https://doi.org/10.1007/s13369-017-2962-8

Mahmoud, M.A. & Nasr-El-Din, H.A. 2014. Modeling flow of chelating agents during stimulation of carbonate reservoirs. Arabian Journal for Science and Engineering 39(12): 9239-9248. https://doi.org/10.1007/s13369-014-1437-4

Mahmoud, M., Abdelgawad, K., Elkatatny, S., Akram, A. & Stanitzek, T. 2016. Stimulation of seawater injectors by GLDA (Glutamic-Di Acetic Acid). SPE Drilling & Completion 31(03): 178-187. https://doi.org/10.2118/172572-pa

Mahmoud, M.A., Nasr-El-Din, H.A., De Wolf, C.A., LePage, J.N. & Bemelaar, J.H. 2011. Evaluation of a new environmentally friendly chelating agent for high-temperature applications. SPE Journal 16(3): 559-574. https://doi.org/10.2118/127923-PA

Mandava, S., Ganganna, B., Hwang, J., Jang, Y., Hwang, J., Samala, M., Kim, K-B., Park, H., Lee, J.H., Baek, S.Y. & Lee, J. 2017. Synthesis and structure revision of dimeric tadalafil analogue adulterants in dietary supplements. Chemical and Pharmaceutical Bulletin 65(5): 498-503. https://doi.org/10.1248/cpb.c17-00034

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. 1953. Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21(6): 1087-1092. https://doi.org/10.1063/1.1699114

Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A.R. & Hatamjafari, F. 2021. Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and subs. Journal of Chemical Research 45(1-2): 147-158. https://doi.org/10.1177/1747519820932091

Muhammad Haziq Ridzwan, Muhammad Haziq, Muhamad Kamil Yaakob, Zubainun Mohamed Zabidi, Ahmad Sazali Hamzah, Zurina Shaameri, Fatin Nur Ain Abdul Rashid, Karimah Kassim, Mohd Fazli Mohammat, Noor Hidayah Pungot, Muhamad Azwan Muhamad Hamali, Ahmad Shalabi Md Sauri, Farhana Jaafar Azuddin, Emily S. Majanun, Yon Azwa Sazali & M. Zuhaili Kashim. 2022. Computational insight into the quantum chemistry, interaction and adsorption energy of aminopolycarboxylic acid chelating agents towards metal cations. Computational and Theoretical Chemistry 1208: 113579. https://doi.org/10.1016/j.comptc.2021.113579

Noureddine, O., Issaoui, N., Gatfaoui, S., Al-dossary, O. & Marouani, H. 2021. Quantum chemical calculations, spectroscopic properties and molecular docking studies of a novel piperazine derivative. Journal of King Saud University - Science 33(2): 101283. https://doi.org/10.1016/j.jksus.2020.101283

Obot, I.B., Kaya, S., Kaya, C. & Tüzün, B. 2016. Density functional theory (DFT) modeling and Monte Carlo simulation assessment of inhibition performance of some carbohydrazide Schiff bases for steel corrosion. Physica E: Low-Dimensional Systems and Nanostructures 80: 82-90. https://doi.org/10.1016/j.physe.2016.01.024

Pilli, S.R., Banerjee, T. & Mohanty, K. 2015. HOMO - LUMO energy interactions between endocrine disrupting chemicals and ionic liquids using the density functional theory: Evaluation and comparison. Journal of Molecular Liquids 207: 112-124. https://doi.org/10.1016/j.molliq.2015.03.019

Rappe, A.K., Colwell, K.S. & Casewit, C.J. 1993. Application of a universal force field to metal complexes. Inorganic Chemistry 32(16): 3438-3450. https://doi.org/10.1021/ic00068a012

Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A. & Skiff, W.M. 1992. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society 114(25): 10024-10035. https://doi.org/10.1021/ja00051a040

Repo, E., Warchoł, J.K., Bhatnagar, A., Mudhoo, A. & Sillanpää, M. 2013. Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water. Water Research 47(14): 4812-4832. https://doi.org/10.1016/j.watres.2013.06.020

Singh, A., Ansari, K.R., Quraishi, M.A. & Lin, Y. 2019. Investigation of corrosion inhibitors adsorption on metals using density functional theory and molecular dynamics simulation. Corrosion Inhibitors, edited by Singh, A. IntechOpen. https://doi.org/10.5772/intechopen.84126

Stephens, P.J., Devlin, F.J., Chabalowski, C.F. & Frisch, M.J. 1994. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of Physical Chemistry 98(45): 11623-11627. https://doi.org/10.1021/j100096a001

Tuerk, H., Weber, H., Kischkel, D. & Franke, J. 2019. Formulations and Production and Use Thereof. Patent No. US 10,844,326 B2.

Xu, Y., Zhang, S., Li, W., Guo, L., Xu, S., Feng, L. & Madkour, L.H. 2018. Experimental and theoretical investigations of some pyrazolo-pyrimidine derivatives as corrosion inhibitors on copper in sulfuric acid solution. Applied Surface Science 459: 612-620. https://doi.org/10.1016/j.apsusc.2018.08.037

Yusuf, T.L., Oladipo, S.D., Zamisa, S., Kumalo, H.M., Lawal, I.A., Lawal, M.M. & Mabuba, N. 2021. Design of new Schiff-base copper(II) complexes: Synthesis, crystal structures, DFT study, and binding potency toward cytochrome P450 3A4. ACS Omega 6(21): 13704-13718. https://doi.org/10.1021/acsomega.1c00906

Ziemlak, L.W., Bullock, J.L., Bersworth, F.C. & Martell, A.E. 1950. Carboxymethylation of amines. III. Preparation of substituted glycines. The Journal of Organic Chemistry 15(2): 255-258. https://doi.org/10.1021/jo01148a007

 

*Corresponding author; email: mohdfazli@uitm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next